Electrolysis Problems Set II

Note: show all your work to answer these questions.

1. The half-reactions at an electrode is Mg^{2+} (molten) + 2e- $\rightarrow Mg_{(s)}$ Calculate the number of grams of Mg that could be produced by passing 1.00 F through the electrode. (ans. 12.15g)

- 2. Consider the electrolysis of molten lithium chloride.
 - (a) Write the electrode reactions.

 \rightarrow

 \rightarrow

(b) How many grams of lithium metal can be produced by passing 0.50 A for 30 minutes? (ans. 0.064 g)

3. Explain why different products are obtained in the electrolysis of molten ZnCl₂ and in the electrolysis of an aqueous solution of ZnCl₂.

4. How many Faradays of electricity are required to produce:

```
(a) 0.84 L of O<sub>2</sub> at exactly at 1.0atm and 25°C from aqueous H<sub>2</sub>SO<sub>4</sub> solution; (ans. 0.14 \mathcal{F})
```

(b) 6.0g of Sn from molten SnCl₂?

(ans. 0.10 *f*)

5. Calculate the amounts (in grams) of Cu and Br₂ produced at inert electrodes by passing a current of 4.50 A through a solution of CuBr₂ for 1.0 hour. (ans. 5.33g; 13.42g)

6. The passage of a current of 0.750 A for 25.0 min deposited 0.369 g of Cu from a CuSO₄ solution. From this information, calculate the molar mass of copper. (ans. 63.29g/mol)

7. Chromium plating is applied by electrolysis to a bumper according to the following half-reaction: $Cr_2O_7^{2^2}_{(aq)}$ + 14 H+_(aq) + 12 e- \rightarrow 2 Cr_(s) + 7 H₂O_(l)

Assume that the electrolytic cell is operating at 25.3 A, how long (in hours) will it take to plate out 18 g of Cr onto an automobile bumper? (ans. 2.2 hours)